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Abstract: Machine learning (ML) algorithms are currently emerging as powerful tools in all areas of science.
Conventionally, ML is understood as a fundamentally data-driven endeavour. Unfortunately, large well-curated
databases are sparse in chemistry. In this contribution, I therefore review science-driven ML approaches which do not
rely on “big data”, focusing on the atomistic modelling of materials and molecules. In this context, the term science-
driven refers to approaches that begin with a scientific question and then ask what training data and model design
choices are appropriate. As key features of science-driven ML, the automated and purpose-driven collection of data and
the use of chemical and physical priors to achieve high data-efficiency are discussed. Furthermore, the importance of
appropriate model evaluation and error estimation is emphasized.

1. Introduction

Machine learning (ML) is now an established part of several
key areas of chemical research, e.g. in the development of
interatomic potentials,[1,2] the analysis of complex simulation
data[3] or the design of novel drugs[4] and materials.[5] Beyond
being a methodological novelty, atomistic ML has enabled
real scientific breakthroughs, e.g. in predicting protein
structures[6] or understanding the properties of water,[7,8]

silicon,[9] and hydrogen under extreme conditions.[10]

While chemical ML is an extraordinarily diverse subject
(including applications in so-called self-driving labs[11] or in
the analysis of experimental data),[12] atomistic ML is
arguably one of its most mature sub-fields. Here, atomically
resolved structural data serve as the main in- or outputs of a
model. Among other reasons, the success of atomistic ML
can be attributed to the facts that modern ML methods are
inherently well suited for such high-dimensional problems,
and that electronic structure calculations (most often using
Density Functional Theory, DFT) offer a relatively straight-
forward way for generating high quality reference data.

Indeed, there is currently a veritable hype around ML
for atomistic systems, with a multitude of new applications
being reported every day. As is commonly the case with
hypes, not all the reported benefits of ML hold up to
scrutiny, however. For instance, comparisons with adequate
(non-ML) baselines are often not performed and the
applicability of the proposed methods beyond the scope of
the training data is often unclear.[13]

Here, a certain disconnect between common practices in
method development and the practical demands of atomistic
modelers can be observed. For understandable reasons, the
former prefer to focus on well established benchmark
datasets. These are readily available and allow rigorously
comparing new methods with the state-of-the-art. Unfortu-
nately, these benchmark problems merely represent an
imperfect proxy to real chemical research questions. Con-
sequently, many proposed methods do not find their way

into practical applications. Even more critically, the focus on
specific benchmarks leads to certain trends in atomistic ML
research (such as the development of ever larger deep
learning models with millions of parameters) that may
actually be detrimental for many practical applications.[14]

In this contribution, I aim to provide an overview of how
the availability of data shapes research in atomistic ML,
with a focus on the use of supervised learning in atomistic
simulations. Based on this, I differentiate between data-
driven and science-driven ML approaches and argue that
the latter are essential for addressing many pressing
scientific questions. Finally, key aspects of science-driven
ML approaches are reviewed and promising future research
directions are discussed.

2. Big and Small Data

There is a famous quote attributed to Ernest Rutherford,
that “all science is either physics or stamp collecting”. This is
often interpreted as disparaging sciences like chemistry and
biology for lacking a deep understanding of the physical
world and merely describing and categorizing a large variety
of phenomena and observations. The authenticity of this
quote is dubious and it is actually rather unlikely that
Rutherford of all people would have belittled the value of
empirical observations in science. Nevertheless, chemical
research sometimes undeniably has a certain resemblance
with stamp collecting (e.g. starting with “Beilstein’s Hand-
book of Organic Chemistry” first published in 1881).[15]

Rather than being a frivolous hobby, however, such efforts
have led to the formation of essential databases that are
used by millions of chemists every day.

The longest tradition of this can be found in organic
chemistry, particularly in the field of molecular synthesis.
Beyond the already mentioned Beilstein Handbook (now
part of Reaxys), there are several public domain efforts like
PubChem[16] or ChemSpider,[17] each containing data on
hundreds of millions of small (i.e. consisting of ca. 100 atoms
or less) organic molecules. Such databases are far from
complete given the size of chemical space, estimated to be
on the order of 1060 molecules (even when only considering
CHNOS-containing drug-like molecules).[18] Nonetheless,
they have played a key role in the development of ML
models in chemoinformatics. Here typical applications
include synthesis planning or the generation of new
molecules.[19–22]
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As useful as these databases are, the kind of information
they contain limits their applicability in atomistic ML. For
example, molecules are usually represented in terms of
strings (SMILES or InCHI) or graphs, lacking full three
dimensional information (although approximate 3D geo-
metries are available in many cases). Furthermore, for many
of the contained molecules the only available experimental
information is the fact that it has been reported in the
literature. Structure-property relations and regression mod-
els (e.g. for biological activities) are thus usually obtained
from smaller annotated subsets of these resources. Mean-
while, ML applications aiming to predict 3D geometries or
generate full dimensional structure-property mappings (e.g.
potential energy surfaces) cannot rely on them at all.

This lack is to some extent addressed by databases
collecting experimentally determined structures (mostly
from X-ray diffraction), such as the Cambridge Structural
Database (CSD),[23] the Protein Data Bank (PDB),[24] or the
Inorganic Crystal Structure Database (ICSD).[25] These
provide high quality insights into the 3D structure of
molecules, proteins and inorganic solids, respectively. Given
the expense and technical difficulty of performing such
experiments, these databases are orders of magnitude small-
er than the aforementioned ones, however (between 100,000
and one million entries). At the same time, each entry
contains a much greater depth of information, so that
powerful ML models can nevertheless be trained on them,
as prominently demonstrated by the recent success of the
AlphaFold2 model trained on the PDB.[6]

Efforts like the PDB are thus immensely valuable.
Unfortunately, they are hard to reproduce in other fields.
They depend on long-term funding and the collective
contributions from an entire scientific community over
several decades. Experimental databases in other fields are
therefore usually much smaller, often containing only tens
or hundreds of datapoints, if they exist at all. This is not
necessarily due to a lack of reported experiments in
principle but rather due to the difficulty of extracting the
results from the literature and, crucially, due to the
inconsistency of experimental results obtained in different
labs or with different techniques.[26] On top of this,
publication bias is a real problem in some cases, e.g. when
only active catalyst materials are published, while ‘failed’

experiments remain unreported.[27] To address pressing
chemical questions such as the prediction of catalytic
activities or solvation effects with ML, we thus cannot wait
for a project equivalent to the PDB to materialize in the
respective fields.

Since the mid-2000s, the increased availability of compu-
tational resources and first-principles electronic structure
methods (in particular DFT) has changed this situation
somewhat, by enabling the creation of computational data-
bases. Prominent examples of this include the Materials
Project,[28] AFLOW,[29] the Materials Cloud,[30] the Open
Quantum Materials Database,[31] and NOMAD,[32] all of
which mostly focus on the properties of bulk solids. Here,
the Materials Project is a particularly insightful example as it
expands an experimental database (the ICSD) with addi-
tional materials and properties. The relative ease of running
a DFT calculation means that this can be achieved much
more quickly and at a fraction of the cost of the correspond-
ing experiments. Similarly, a series of computational molec-
ular databases have been developed, initially focusing on the
small organic molecules of the GDB-17 universe.[33] The
QM9 database containing ground state properties of over
100k molecules was a pioneering achievement in this context
(see Figure 1).[34] The landscape of molecular databases has
since been expanded further by including non-equilibrium
configurations and conformers,[35,36] ionized states,[37] and
radicals.[38]

To summarize this bird’s-eye view of atomistic data, we
can say that in spite of chemist’s supposed fondness of stamp
collecting, there are only a few experimental databases that
can reasonably be called ‘big data’. This is because large,
community-wide efforts are required to generate them. In
most fields, high quality experimental databases are thus
decidedly ‘small data’. Computational databases based on
high-throughput electronic structure calculations provide an
important alternative in this context, as they can be
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to study chemical reactions and discover new functional materials.

Figure 1. Visualization of the QM9 dataset of small organic molecules
using the kernel Principal Component Analysis method. Each point
represents a molecule and the distance between points indicates their
structural similarity. This is emphasized by the paths in the Figure,
highlighting systematic structural changes. The colormap reveals that
electronic properties like the atomization energy vary smoothly across
chemical space. Adapted with permission from Ref. [39]. Copyright
2020 American Chemical Society.
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generated much more cheaply. Even here, full coverage of
chemical space cannot be expected, however.

3. Data-Driven and Science-Driven Machine
Learning

It is clear that the landscape of available databases just
described impacts the direction that research in atomistic
ML is taking. In particular, computational databases like
QM9[34] have been instrumental in the development of
atomistic ML models. This reflects the highly competitive
nature of ML research, where exceeding state-of-the-art
performance on a well defined dataset and task is one of the
main goals when developing new methods. This kind of ML
research is thus in a literal sense data-driven, i.e. the
available datasets and associated tasks determine how new
methods are designed. This has undeniably led to significant
progress, but it also represents a rather artificial setting
compared to real chemical research. Most importantly, for
the reasons outlined above it is usually not the case that a
well-curated dataset exists that can be used to develop an
ML model.

Approaches that are optimized in a data-driven setting
are therefore of limited use for answering questions like:
“What is the structure of an interface between two
materials?” or “What is the free energy barrier for a
particular heterogeneous catalytic reaction?”. The available
sources of big data contain little to no information about
these questions. While it would in principle be possible to
address this lack by generating new extensive databases
dedicated to a certain material class or target property (as
was recently done with the OC20 database focusing on
heterogeneous catalysis),[40] this requires massive invest-
ments of time and money. Furthermore, it is not trivial to
predict what size and shape such a database should have, in
order to cover the target domain in a satisfactory manner.

Fortunately, there is an alternative to the data-driven
approach, which I will term “science-driven” in the following
(see Figure 2). The key feature of science-driven ML is that
it begins with a scientific question and then asks what

training data and model design choices are appropriate. This
is particularly important when scientific questions are not
reducible to a simple metric like the mean absolute error
(MAE) with respect to some predefined test set. Indeed,
this is a common situation in atomistic ML, where training
data is usually generated by first-principles electronic
structure calculations (e.g. of total energies and forces),
while the property of interest is often a macroscopic
observable, such as a reaction rate, melting point or
diffusion coefficient at finite temperature.[8,38] Accurately
predicting energies and forces for a fixed test set does not
guarantee that the observable is accurately predicted, since
the dynamic simulation required to predict the observable
can lead far away from the configurations in the test set.
Furthermore, it is not trivial to determine a priori how
errors on energies and forces translate to errors on the
desired observables. In other words, even if the test set
provides an accurate estimate of how the model performs
for unseen data, it is unclear how low the corresponding test
error should be for any given application.

Having established the scope of science-driven ML, what
are the main challenges towards developing such models?
First, since predefined training sets are not available,
adaptive algorithms for data generation and high data-
efficiency of the models are required. Second, robust
extrapolative capabilities are essential, since the configura-
tional space of interest is also not known at the outset.
Finally, it would be beneficial to gain insights into how
errors propagate from atomistic predictions to macroscopic
observables. In the remainder of this manuscript, I will
discuss how these requirements can be achieved in practice,
with the help of active learning, physical priors and
uncertainty estimation.

Note that the concepts discussed herein are largely
agnostic towards the technical details of the ML models
themselves (e.g. regarding neural networks vs. Kernel
methods). For in-depth discussions of different methodolog-
ical approaches to atomistic ML, the reader is referred to
several recent review articles.[1,2,41–46]

4. Active and Iterative Learning

The development of ML interatomic potentials almost
immediately revealed the limitations of a purely data-driven
approach in chemistry. Indeed, it is almost impossible to
generate a training database that adequately covers the
phase space of any reasonably complex molecule or material
a priori.[47] Even for the relatively simple case of non-
reactive closed-shell organic molecules in the gas-phase, this
requires a sufficiently representative set of molecules, an
extensive exploration of the configuration space of each
molecule and a set of non-equilibrium configurations for
each conformer (e.g. from molecular dynamics or normal
mode displacements).

To put this into perspective, the QM7-x database of
Hoja et al. provides over 4 million configurations that fulfil
these criteria for organic molecules with up to seven heavy
atoms.[36] While this affords sufficient coverage to train

Figure 2. Schematic illustration of data-driven and science-driven
machine-learning approaches. In the science-driven approach, data
collection is driven by specific scientific questions and a feedback loop
between model fitting and data collection is implemented.
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robust interatomic potentials for small gas-phase molecules,
such potentials will not be able to extrapolate to condensed
systems (e.g. molecular liquids or crystals), macromolecules
(e.g. proteins or polymers) or chemical reactions. Further-
more, data requirements tend to rise non-linearly with the
number of elements in the system due to the curse of
dimensionality. Generating a dataset with similar coverage
as QM7-x for condensed phase systems, inorganic materials
or biomolecules in solution would consequently require a
staggering computational effort.

A hallmark of most science-driven ML approaches is
therefore that data collection and model construction are
not decoupled from each other. Instead, multiple models are
fitted in an iterative fashion so that the training set is
expanded at each step, based on the predictions of the
current model. Because the model itself influences the
training set, this is often termed active learning (AL) or
iterative training (see Figure 3).

The key ingredient of any AL approach is a criterion
according to which new datapoints are selected. Here, the
most common choices either leverage data diversity or
predictive uncertainties. In the former case, a measure for
similarity between datapoints is used to ensure that new
configurations added to the training set are as dissimilar as
possible to the already known configurations.[48] In the latter
case, the ML model provides a measure of uncertainty along
with each prediction. This way, highly uncertain predictions
can be checked with accurate reference calculations and
subsequently added to the training set. These uncertainty
estimates are often obtained by fitting ensembles of models
with different weight initializations and/or different sub-
samples of the training set.[49] Alternatively, Bayesian ML
methods like Gaussian Process Regression directly provide
predictive uncertainties.[2, 50]

While the AL concept is rather simple, it is not
necessarily trivial to implement in practice. In particular,
uncertainty measures must be well calibrated in order to
provide reliable and useful error estimates.[49,50] There is also
a question of resolution: the predicted uncertainty on the
atomization energy of a large molecule may be small, even if
a certain functional group is poorly described by the model.
For both uncertainty and diversity-driven workflows it can
therefore be appropriate to use per-atom rather than per-
configuration estimates, depending on the application.[51–53]

The most common use-case for AL in chemistry is the
development of interatomic potentials. Here, a preliminary
potential can be used to run exploratory simulations (often
dynamics or structure searches), generating novel configu-
rations. These can in turn be evaluated with first-principles
calculations and added to the training set.

Since it is impossible to know a priori what configu-
rations are required for fitting an interatomic potential, AL
has always been used in this context, though not necessarily
in fully automated workflows. This is sometimes termed
“offline” AL, since the simulation, data selection and
training are performed in separate steps (see Figure 3).[54]

More recently, several groups have also shown that “online”
active learning can be used in some cases, e.g. for molecular
dynamics (MD) simulations.[51,55–57]

As an example, an online AL potential for Meth-
ylammonium Lead Iodide (MAPI) by Jinnouchi et al. is
shown in Figure 4.[51] It can be seen that the uncertainty
estimate in this plot correlates well with the real error of the
potential, so that first-principles calculations can be invested
effectively. As a consequence, 99% of the calculations
necessary for the corresponding ab initio MD trajectory are
saved, enabling the application of the potential to study
complex phase transitions.

Figure 3. Illustration of offline and online active learning. Left: In the offline approach, the simulation of interest is performed with an ML model,
generating new configurations. By evaluating samples of these, the accuracy of the ML model can be checked. If the obtained error L is above a
tolerance criterion, new configurations are added to the training set and the simulation is repeated. Right: In the online approach, the model itself
provides an uncertainty measure for each prediction made, e.g., during a molecular dynamics or Monte Carlo simulation. If the predictive
uncertainty σ is above a tolerance factor, a reference calculation is performed and the model is retrained based on this new information.
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Similarly, offline active learning was recently shown to
drastically increase the efficiency of global structure
searches for large molecular adsorbates on transition metal
surfaces.[58] Due to the conformational flexibility of these
molecules, this is a complex global optimization problem. In
an AL workflow, interatomic potentials were used to run
extensive Minima Hopping simulations to explore this
configuration space. By retraining the models on the thus
generated configurations, high accuracy and data-efficiency
could be achieved. The converged potentials were then used
for extensive structure searches for a series of molecules and
fragments on different Rh surfaces. This revealed that the
stability of some adsorbates was previously underestimated
by more than 1 eV, with significant implications for
catalysis.

In this context, interatomic potentials are a special case
as they can directly be used to generate new configurations
(e.g. through simulations). This is different for more general
regression or classification models, e.g. when predicting
electronic properties like reorganization energies[59] or bio-
logical activities.[60] Here, a similar concept can nonetheless
be applied, when a large pool of unlabelled, potentially
interesting systems is available. An uncertainty or diversity
measure can be used to efficiently draw samples from this
pool, again iteratively expanding the training set. This
strategy was, e.g., used for the ANI-1x potential, leading to
higher accuracy with a fraction of the data used for its
predecessor.[35] A similar concept is used in the self-
correcting ML of Dral and co-workers.[61]

Another important application of AL and related
techniques (namely Bayesian Optimization) is for optimiza-
tion tasks.[62,63] These include the already mentioned struc-
ture searches (i.e. finding the most stable geometry of a
system)[52,62–66] but also more general molecular or materials
design tasks (i.e. finding a compound with desired
properties).[59,60,67,68] Here, the goal is not just to add diverse
configurations to the training set but also to guide the

optimizer towards favourable configurations or systems.
Data selection is thus governed by an acquisition function
that balances exploration (as quantified by uncertainty or
diversity measures) and exploitation (as quantified by
favourable predicted properties of a candidate).

5. Inductive Biases and Physical Priors

It is often claimed that ML models merely interpolate the
training data. While this is true in some sense (though not
strictly speaking, as shown by Zeni et al.),[69] it is also vastly
oversimplifying. Depending how an ML model is set up, it
will perform predictions on unknown data (induction) in
vastly different ways. As a consequence, we can influence
how robustly an ML model will extrapolate beyond the
current training set by making the right design choices. As
discussed in the previous section, AL frameworks use coarse
initial models to generate or select training configurations. It
is therefore of particular importance to use models that
work well in low-data regimes in this context.

In the ML literature, the set of assumptions that
determines how an algorithm performs predictions is
collectively termed the inductive bias of a model. This is
illustrated in Figure 5. There is usually a space of possible
ML models that can fit a given training set equally well.
However, since each model has its own inductive bias, their
predictions for unseen data will in general be different. This
variation is particularly large when little data is available.

In more concrete terms, inductive biases can be related
to how input features are passed to the model (e.g.
sequentially or all at once), how they are processed (e.g.
taking spatial locality into account) and how the output is
produced (e.g. respecting permutational invariance of the
input features). All of these choices influence the predictions
of the resulting models and different applications call for
different model architectures. For example, computer vision
models benefit from other inductive biases than natural
language processing models.

Over the last decade several powerful inductive biases
for atomistic machine learning have been found. Perhaps
the most fundamental of these relate to mathematical
invariances that most chemical properties (particularly the
total energy of a system) fulfil. Specifically, these are
invariance to permutations of atoms of the same element, as
well as global rotations and translations of a system.[41,42] By
rigorously enforcing these invariances when building repre-
sentations of chemical structures, all subsequent ML models
automatically fulfil them. As a consequence, they do not
need to be learned from data, making the corresponding
models more data-efficient.

While invariance is thus a key property, it has recently
been found that important structural information can be lost
in the process of making representations rotationally invar-
iant. In particular, degeneracies or near-degeneracies can
occur, meaning that different structures (with different
properties) are mapped to the same representation.[70–74]

This is highly problematic for ML models, which obviously
cannot assign different outputs to identical inputs. Further-

Figure 4. Online active learning molecular dynamics for a Meth-
ylammonium Lead Iodide perovskite. Shown are the real (black) and
estimated (red) errors of a machine learned force field (FF). Large
estimated errors trigger first principles (FP) calculations, which are
used to retrain the FF. The structures on top highlight the hydrogen
atom with the highest error in red, for two snapshots. Reprinted with
permission from Ref. [51]. Copyright 2019 by the American Physical
Society.
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more, it is clear that not all molecular properties are
invariant to rotations. Instead, tensorial properties like
(hyper-)polarizabilities or dipole vectors are equivariant,
meaning that they rotate with the molecule.

To address this, a series of equivariant ML models have
been proposed in recent years.[75–77] These are invaluable for
the rigorous prediction of properties ranging from dipole
moments to full electron densities.[78–81] Perhaps surprisingly,
equivariant neural networks can also display significant
advantages when predicting invariant properties like the
potential energy of a system.[75–82] In this case, the models
are internally equivariant until the last layer of the network,
where an invariant output is produced. This way, the loss of
structural information that plagues some invariant represen-
tations is avoided.

Alternatively, it has also been found that higher-order
invariant representations can be generated efficiently using
the atomic cluster expansion (ACE).[83,84] This approach is
closely related to the classic cluster and many-body
expansion methods used in chemistry and materials
modelling.[85] Importantly, the ACE invariants form a
systematically convergent basis so that full structural
information can be retained in an invariant
representation.[86] Indeed, due to its completeness and
efficiency, ACE allows the development of highly accurate
interatomic potentials using (regularized) linear regression,
providing an ideal trade-off between accuracy and speed in
many cases.[84,87] In a similar vein, models like UF3 or
ChiMES use explicit body-order expansions of the energy in
terms of products of two-body functions.[88,89]

To illustrate the benefits of inductive biases such as
equivariance and high body-order for science-driven ML, it
is instructive to consider the MACE approach of Batatia
et al.[82] In MACE, both the equivariance and the body-
order of the model can be controlled via hyperparameters.
As shown in Figure 6, both of these factors lead to improved
predictive accuracy. Interestingly, this is not merely reflected
in a consistently lower MAE, but in a steeper slope of the

learning curves, indicating that equivariant and high body-
order models learn more effectively from the data.

It should be noted that an alternative approach to
predicting tensorial properties is to take Cartesian deriva-
tives of invariant model outputs. Indeed, this is the standard
approach for predicting force vectors, which are rigorously
defined as energy derivatives. More recently, this idea has
been generalized to predicting dipole moments, coupling
vectors and electronic friction tensors.[90–92]

The above considerations relate to how structural
information is received and transformed by the model.
Inductive biases can also be related to the fitting target. This
can be as simple as choosing the adequate scale when fitting
energies. By predicting atomization energies and requiring
that the energies of isolated atoms are strictly zero, a model
will automatically predict bond energies that are on the
correct order of magnitude, even when no bond-breaking
events are in the training set.[2] Similarly, size-extensivity of
ML models can be enforced by adequately normalizing the
representation and fitting target.[93] This also has important

Figure 5. Illustration of inductive bias. Left: There is a space of possible machine learning models that can fit the training data similarly well.
However, each of these models will make different predictions for unknown data. Right: As more data is added (from top to bottom), the variation
of different models that perfectly fit the training data decreases. Consequently, inductive biases are particularly important in the ‘small data’
regime.

Figure 6. Mean absolute error (MAE) of force predictions for Aspirin
configurations with MACE potentials, as a function of the training set
size. Left: Without equivariance (L ¼ 0), the data efficiency can be
increased by increasing the body-order of the potential (ν). Right: For a
fixed body-order, introducing equivariance (L > 0) also increases the
data-efficiency. In both cases, the slopes (s) of the learning curves
increase with better inductive biases. Figure adapted from Ref. [82]
with permission.
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consequences for predicting reaction energies in complex
reaction networks.[38] Here, fitting energies per atom is
beneficial since small but chemically important molecules
like H2 and CO are described less accurately otherwise.

A particularly powerful type of inductive bias is the
explicit inclusion of physical priors. This is often achieved
via the Δ-ML approach,[94] where the predictions of a
computationally efficient physical model (often a semi-
empirical method)[95–97] are used as a baseline. The ML
model then merely predicts the difference between the
target method and the baseline, which can dramatically
decrease the amount of data required to achieve a given
accuracy.[98–100] The inclusion of an explicit physical baseline
furthermore often ensures better transferability of the
model.[101,102]

An additional advantage of Δ-ML is that it enables the
inclusion of effects at the baseline level, which cannot be
described by the ML model at all. A prominent example of
this are long-range electrostatic and dispersion interactions,
which are missing in many common ML models based on
local atomic environments.[102,103] In the context of dispersion
interactions, a related idea is to train a short-ranged model
on (long-range) dispersion-free DFT data. These effects can
then be treated separately via physical van der Waals
corrections. The latter may in turn also be coupled to ML
models predicting charges or Hirshfeld volumes.[104,105]

Such Δ-ML models were used in Ref. [103] to predict the
structures of organic molecular crystals. Here, a dispersion
corrected density functional tight-binding (DFTB) baseline
was combined with a local ML correction.[106, 107] While the
baseline alone was not sufficiently accurate to reliably rank
potential crystal polymorphs (or predict their structures), it
did provide a reasonable prior for the relevant inter- and
intramolecular interactions. Meanwhile, a pure local ML
model would also be inadequate here, since relative crystal
stabilities are known to depend on long-range interactions.
Combining DFTB and ML, highly accurate and data-
efficient models could be obtained.

As an alternative to Δ-ML, semiempirical models can
also be used to generate more powerful, physics-based input
features for ML models. An example of this are the OrbNet

models, which use semiempirical electronic properties to
this end.[108,109] Such features were also found to be advanta-
geous when predicting molecular reorganization energies,
which do not depend on the ground state structure alone.[100]

Finally, the arguably most sophisticated way to use
physical priors is to build so-called physics-enhanced ML
models. In this case, an ML model is intimately connected to
a physical model. Indeed, it would be equally valid to talk
about ML-enhanced physical models. This is a highly active
field of research which spans ML-predicted
Hamiltonians,[110–112] semiempirical models with environ-
ment-dependent parameters[113] and machine-learned quan-
tum chemical methods.[114, 115]

In this context, the electron density plays a central role.
Several groups have reported models for predicting electron
densities in materials and molecules.[80,116,117] This is of great
interest since a range of important electronic properties
(such as multipole moments or molecular electrostatic
potentials) can be obtained directly from the density.
Furthermore, accurate learned densities can accelerate the
convergence of DFT calculations or avoid self-consistency
loops altogether.[116,118] A key inductive bias for such models
is how the electron density is represented (see Figure 7).

Arguably, the most straightforward solution is to use
real space grids, which are already implemented in most
DFT codes. The feasibility of this was demonstrated in
Ref. [117] for uniform grids. Such grids are only efficiently
applicable for valence electron densities of dense, condensed
phase systems, however. Generalization of density predic-
tion to the non-uniform grids used in all-electron DFT codes
with open boundary conditions is not straightforward.
Furthermore, real space grids have enormous memory
demands for large systems. In a seminal paper, Brockherde
et al. showed that the density can instead be predicted
efficiently in a plane-wave basis.[116] Here, the orthogonality
of the basis is mathematically convenient, as a separate ML
model can be fitted for each Fourier component. On the
flipside, this restricts the prediction to fixed unit-cells and
relatively rigid systems.

In Ref. [80] these limitations were overcome by repre-
senting the electron density in terms of atom-centered basis

Figure 7. Representations of electron densities in machine learning, illustrated for a one-dimensional hydrogen molecule. Left: The most
straightforward approach is to map the density onto a real space grid. Center: A plane-wave basis is more compact and mathematically convenient
due to the orthogonality of the basis functions. Right: An atom-centered basis is highly compact and allows decomposition of the density into
atomic contributions, which enables scaling to large systems. Note that all representations yield the same density using 100, 10 and 4 basis
functions, respectively. Figure adapted with permission from Ref. [119].
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functions. A key feature of this approach is that it naturally
decomposes the density into atomic contributions. This
enables highly transferable and equivariant density predic-
tions, where models can be trained on small systems and
applied to large ones. This advance was subsequently used
for density prediction in large non-covalently bonded
systems[120] and periodic cells.[81]

Even more physics can be introduced into density-based
ML models by using the variational principle as an inductive
bias. This means that the electron density is predicted by
minimizing an ML-based energy functional. In this case the
model is a full-blown density functional approximation,
meaning that it offers a route to all first-order properties,
energies, and forces on an equal footing. Here, flexible ML
models can overcome the well-known self-interaction prob-
lems of conventional semilocal functionals.[121] In this
context, the main focus has been on machine-learned
exchange-correlation functionals, and to a lesser degree on
kinetic energy functionals for orbital-free DFT.

A key question for ML DFT is how non-locality can be
introduced into the functionals. One alternative is to use the
same non-local ingredients also used in conventional DFT,
such as the kinetic energy density and the exact exchange
density. This was exploited in the recent DM21
functional.[122] While DM21 shows impressive performance
on a wide variety of benchmarks, Becke subsequently
showed that physics-based functionals using the same
ingredients can be equally or more accurate.[123, 124] More
critically, the local exchange density is computationally
involved to calculate, so that these functionals are much less
widely applicable than conventional ones. Much interest has
therefore been devoted to the development of non-local ML
functionals that depend on the electron density alone (pure
density functionals).

Here, one strategy is to use convolutions, so that the
local exchange-correlation energy density on any given point
depends on the electron densities at nearby grid
points.[125–128] Bystrom and Kozinsky showed that these
convolutions can be designed to obey scaling constraints, a
critical step towards more rigor in ML DFT.[129] Indeed, a
substantial advantage of the convolutional approach is that
it can be formulated as a straightforward generalization of
semilocal functionals, so that the same exact constraints can
be enforced. It should be noted, however, that performing
the convolutions represents substantial computational over-
head.

As with density prediction, moving away from the grid-
based representation has some advantages in this context. In
both plane-wave and atom-centered basis sets, non-locality
is automatically included. Bogojeski et al. showed that
highly accurate non-local functionals can be fitted in a plane
wave basis.[118] This completely avoids numerical quadrature
on a grid and thus has the potential to be more efficient
than conventional DFT, especially when combined with
density prediction. Unfortunately, the resulting functionals
are not size-extensive, however.

Here, the use of atom-centered basis functions again
offers a promising route. Dick and Fernandez-Serra showed
that density projections could be used to create non-local,

atom-centered density representations for size-extensive
exchange-correlation functionals, using the semilocal PBE
functional as a baseline.[130] Similarly, Margraf and Reuter
used density-fitting to obtain pure, non-local and size-
extensive correlation functionals that achieve energy errors
below 1 kcalmol� 1 with less than 100 training samples.[119]

A key advantage of using such atom-centered represen-
tations is that the corresponding models naturally scale to
large systems and are computationally highly efficient. A
downside compared to grid-based methods is that they are
not as transferable across the periodic table, since the basis
functions are to an extent element specific. Furthermore,
these functionals currently do not respect any exact con-
straints.

A big advantage of the physics-enhanced approach in
general is that it leads to much higher interpretability of the
predictions. A pure ML model may be able to accurately
predict dipole moments, but a physics-enhanced model
additionally allows understanding these dipole moments in
terms of more fine-grained charge distributions. Another
advantage is that physics-enhanced models often predict
more fundamental quantities that allow predicting multiple
molecular properties on an equal footing. As an example,
predicted electron densities give access to multipole mo-
ments, electrostatic and exchange-correlation energies, as
well as topological properties like partial charges and bond
orders. With the appropriate physical model, it is even
possible to learn properties indirectly (e.g. electron densities
from energies).[131] Finally, as with Δ-ML, physics-enhanced
models tend to be highly data-efficient since they incorpo-
rate strong priors.

On the flip-side, including physical priors in this manner
usually leads to lower computational efficiency when
performing induction. Learned DFT functionals can surpass
the accuracy of conventional approximations in many cases,
but they are usually equally or more expensive to evaluate.
In contrast, pure ML models are typically several orders of
magnitude faster than DFT calculations. In this context, the
scientific question of interest must decide which approach is
best suited. Fortunately, this is not a binary question
between highly data-efficient and interpretable models on
one hand to ultra-fast black-box models on the other.

As an example of an intermediate approach between
these extremes, it can be noted that it is not necessary to
know the full details of the electron density in order to
adequately describe long-range Coulomb interactions. Ar-
trith et al. showed that short-ranged ML potential can
instead be combined with learned atomic partial
charges.[90,132,133] However, when these charges are directly
predicted by an ML model, non-local charge transfer effects
or different total charge states cannot be described.

By invoking the variational principle as an inductive
bias, Goedecker and co-workers showed that ML-based
charge equilibration models can overcome this limitation.[134]

This idea has since been further developed, e.g. in the fourth
generation neural network potentials of Behler and co-
workers[135] and our recently proposed kernel charge equili-
bration method.[136] It should also be noted that ML models
using global descriptors provide a different path towards
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including non-local effects, by explicitly correlating all
atomic degrees of freedom.[137]

6. Model Evaluation and Error Propagation

The previous sections described how science-driven ML
approaches can take advantage of active learning, inductive
biases, and physical priors to overcome the need for large
predefined databases. Up to this point we tacitly assumed
that there is a clear performance metric with respect to
which the ML models should be optimized. In some cases
defining this metric is fairly straightforward: Molecular or
materials design requires an accurate prediction of the target
property for the candidates of interest. This can be
quantified in terms of a MAE on an unseen test set,
provided that the test set is representative of the full design
space (a non-trivial caveat).

In other cases, the ML model only addresses the main
scientific question in an indirect way, however.[138] A prime
example of this are interatomic potentials. From an ML
perspective these are simply regression models fitted to
energies and forces. From a scientific perspective, the
energies and forces are not really of much interest. Instead,
the interatomic potential is a tool used to propagate atomic
coordinates, e.g. in MD or Monte Carlo simulations. The
observables of interest can then be derived from these
simulations in the form of an average density, a melting
point, a diffusion constant, or a free energy difference. This
raises the question how the force MAE of a potential relates
to these observables.

This question may appear somewhat academic, since one
could argue that as long as the predicted PES matches the
target one (as quantified by the MAE), all derived quantities
should also match. However, it turns out that the force
MAE on a test set is not even a good predictor for the
general force error of an interatomic potential. In Ref. [139],
a series of interatomic potentials were fitted to subsets of
the QM7-x database.[36] Graph neural networks based on the
recent GEMNet architecture[140] displayed the best perform-
ance in this context, with force errors below 0.005 eV/Å for
the test set when training on 3.2 million configurations.
Interestingly, even the smallest training set used (3.2 thou-
sand configurations) yielded quite low force errors, on
average below 0.05 eV/Å. However, when running MD
simulations with these potentials and reevaluating the
obtained configurations with DFT, the observed error was
found to be several orders of magnitude larger for the
models trained on 32,000 configurations or less (see Fig-
ure 8).

The problem here is that these potentials have no
information about unphysical regions of the potential energy
surface. If the trajectory leaves the scope of the training set
(which is unavoidable in high dimensional PESs), such
unphysical configurations (e.g. doubly coordinated hydrogen
atoms in organic molecules) may erroneously be assigned
low energies. At this point, the simulation becomes stuck in
an unphysical region of the PES and the trajectory is useless.
Importantly, this may only become apparent when perform-

ing rather long MD simulations (on the order of nano-
seconds), as shown in Figure 8.

The ML potential trained on 3.2 million configurations
extrapolates quite robustly in this test, indicating that these
pathologies can to some extent be avoided with enough data
(or better yet, with improved data selection using active
learning). The point is, however, that the only way to
reliably evaluate the suitability of an atomistic ML model is
by running real simulations with it. From this perspective,
the common practice of merely reporting improvements on
static benchmark databases should be questioned. This is
another advantage of the offline active learning approach
described above, since it includes atomistic simulations in
the model fitting process by construction.

Once a robust interatomic potential has been obtained,
the question of how the force MAE translates to uncertainty
in the predicted observable can be addressed. Beyond the
intrinsic usefulness of such an uncertainty estimate, this is
important in order to determine how accurate the under-
lying potential needs to be to achieve the desired precision
on the target observable. Here, Imbalzano et al. have shown
that ensemble-based uncertainty estimates can be propa-
gated through MD simulations.[141] This is show in Figure 9
for the example of predicting the melting point of hexagonal

Figure 8. Robustness of Learned Potentials. Top: The force error on a
static test set can be orders of magnitude lower than the error observed
during long and hot molecular dynamics (MD) trajectories. Bottom:
The large MD errors are only observed when running the simulation
sufficiently long, since they stem from unphysical behaviour for
particular regions of the potential energy surface. Figure adapted with
permission from Ref. [139].
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ice. While this type of calculation is not yet common practice
in the field, this approach holds great promise for increasing
the rigor of ML based predictions.

Another important aspect that has not been addressed
up to this point is that an ML model can only ever be as
good as the reference data it is trained on. In atomistic ML
this data most often stems from DFT calculations, which do
not yield experimental accuracy in many cases. Here, the
development of data-efficient ML approaches and the
increasing availability of high-level quantum chemistry
methods for large and even periodic systems present an
opportunity to exceed DFT accuracy in complex atomistic
simulations. Examples of this include the prediction of
surface adsorbate coverages,[56] the properties of liquid
water[142] and crystal structure prediction.[103]

An alternative route to overcome the limitations of DFT
references is to incorporated experimental data into the
training process, e.g. by biasing simulations towards known
macroscopic properties.[143] Indeed, this concept is already
well established in the domain of classical MD simulations.
For example, the non-bonding parameters in the OPLS
force field were fitted to structural and thermodynamic
properties of liquids.[144] More recently, minimal biasing
methods were developed which modify existing potentials to
reproduce experimental data.[145] Experimental information
can also be incorporated at a non-atomistic scale, e.g. in
coarse grained potentials,[146] augmented Markov Models[147]

or microkinetic models of catalytic processes.[148] Many of
these methods could in principle be directly applied to ML-
based simulations.

7. Summary and Outlook

In this review I have argued that the sparsity of large,
curated databases precludes the use of purely data-driven
ML in many areas of chemistry. In contrast to this, science-
driven ML approaches can be used to answer concrete
scientific questions, even in the absence of pre-existing
databases. To this end, active and iterative learning schemes
are leveraged and data-efficiency of the underlying ML
models is an important requirement. Furthermore, the use
of physical priors is often helpful since it improves the
extrapolative capabilities of the models and reduces the
need for large amounts of training data. These hallmarks of
science-driven ML have some important implications for
method development at the interface of chemistry and ML.

First, iterative training workflows depend on the capa-
bility to (re-)train a model many times on small to mid-sized
datasets, whereas the typical data-driven model is trained
only once on a very big dataset. In the latter case, investing
weeks to train a single model is possible, but for an active
learning protocol this is prohibitive. The move to ever larger
deep learning models that is observed in many ML
applications is potentially a worrying development in this
context.[14] Similarly, the selection of appropriate hyper-
parameters for a model can be problematic as the training
set is continuously changed. In particular, common techni-
ques like cross-validation are not robust in early iterations,
when the training set is extremely small. Here, reliable
heuristics or defaults are necessary.[58]

Second, semiempirical models are currently experiencing
a surprising revival, just when it seemed they would become
irrelevant with the rise of ML potentials. On one hand, this
is because they are invaluable for cheap exploratory
structure searches for complex molecules and materials.[95,149]

On the other hand, they are also highly useful for describing
long-range interactions to complement short-ranged ML
potentials, providing baselines for Δ-ML or computing
inexpensive electronic structure features for ML
models.[97,103,109] Transfer and multi-fidelity learning ap-
proaches can also be used to increase the accuracy on high-
level targets by (pre-)training on lower-level reference
data.[150]

Third, the quality of a science-driven ML model should
mainly be assessed by how well it performs its task, not
necessarily by how well it fits some particular dataset. For
example, a reasonably low test set error on atomic forces is
a necessary but insufficient condition for accurately predict-
ing macroscopic observables with ML-based MD simula-
tions. Method developers should therefore take into account
the wider context of where the proposed methods are
supposed to be applied. A neural network predicting
energies and forces for an atomistic system is not just
another regression model, it is an interatomic potential. It
should therefore also be tested in a realistic use case for
interatomic potentials, such as a (sufficiently long) MD
simulation.

Fourth, the use of error and uncertainty estimation is
still somewhat underdeveloped in the field, although the
corresponding methodology is now quite mature. Beyond

Figure 9. Propagating the uncertainty of learned potentials to physical
observables. Top: The melting point of ice is estimated by computing
the point of equal chemical potential between hexagonal ice and liquid
water, using a committee (ensemble) of machine learning (ML)
potentials. Bottom: By interrogating the individual members of the
committee, the uncertainty of this estimate can be obtained. Note that
this only captures the uncertainty due to the ML potentials, whereas
functional and sampling errors are not included. Reprinted with
permission from Ref. [141]. Copyright 2021 by the American Institute of
Physics.
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the quantification of uncertainty due to the ML fit, the
incorporation of experimental or high-level quantum chem-
ical data represents the next step towards quantitative
predictions with science-driven ML methods. Interestingly,
ML potentials also play a central role in quantifying the
accuracy of electronic structure methods. In ab initio MD
studies, it is usually not possible to disentangle basis set
incompleteness, finite size and statistical sampling errors. By
training ML potentials, these can often be overcome, leaving
an unobstructed view of the real functional error.
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